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and their algal symbionts indicates the threatened staghorn coral,
Acropora cervicornis, is particularly susceptible to elevated
nutrients and heat stress
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Abstract Coral cover is declining worldwide due to mul-

tiple interacting threats. We compared the effects of ele-

vated nutrients and temperature on three Caribbean corals:

Acropora cervicornis, Orbicella faveolata, and Siderastrea

siderea. Colonies hosting different algal symbionts were

exposed to either ambient nutrients (A), elevated NH4 (N),

or elevated NH4 ? PO4 (N ? P) at control temperatures

(26 �C) for[ 2 months, followed by a 3-week thermal

challenge (31.5 �C). A. cervicornis hosted Symbiodinium

(S. fitti) and was highly susceptible to the combination of

elevated nutrients and temperature. During heat stress, A.

cervicornis pre-exposed to elevated nutrients experienced

84%–100% mortality and photochemical efficiency (Fv/

Fm) declines of 41–50%. In comparison, no mortality and

lower Fv/Fm declines (11–20%) occurred in A. cervicornis

that were heat-stressed but not pre-exposed to nutrients. O.

faveolata and S. siderea response to heat stress was

determined by their algal symbiont community and was not

affected by nutrients. O. faveolata predominantly hosted

Durusdinium trenchii or Breviolum, but only corals hosting

Breviolum were susceptible to heat, experiencing 100%

mortality, regardless of nutrient treatment. S. siderea

colonies predominantly hosted Cladocopium C1 (C. gore-

aui), Cladocopium C3, D. trenchii, or variable proportions

of Cladocopium C1 and D. trenchii. This species was

resilient to elevated nutrients and temperature, with no

significant mortality in any of the treatments. However,

during heat stress, S. siderea hosting Cladocopium C3

suffered higher reductions in Fv/Fm (41–56%) compared to

S. siderea hosting Cladocopium C1 and D. trenchii

(17–26% and 10–16%, respectively). These differences in

holobiont susceptibility to elevated nutrients and heat may

help explain historical declines in A. cervicornis starting

decades earlier than other Caribbean corals. Our results

suggest that tackling only warming temperatures may be

insufficient to ensure the continued persistence of Car-

ibbean corals, especially A. cervicornis. Reducing nutrient

inputs to reefs may also be necessary for these iconic coral

species to survive.

Keywords Coral bleaching � Nutrients � Water quality �
Heat stress � Multiple stressors � Coral mortality

Introduction

Ocean warming is recognized as a principal threat to coral

reefs in the twenty-first century (Hoegh-Guldberg et al.

2007; Hughes et al. 2017). To improve the chances of coral

reef persistence, reductions in carbon emissions are

imperative (IPCC 2014). However, local threats such as

nutrient pollution coupled with heat stress can also play a

vital role in coral survivorship (Donovan et al. 2021). The
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mutualistic association between corals and dinoflagellate

algae (family Symbiodiniaceae; LaJeunesse et al. 2018) is

sensitive to changes in both nutrients and temperature.

High nutrients can increase Symbiodiniaceae growth rates

and abundance (Falkowski et al. 1993; Hoegh-Guldberg

1994; Marubini and Davies 1996), reducing the photo-

synthate that symbiotic algae transfer to the coral host

(Hoegh-Guldberg and Smith 1989; Muscatine et al. 1989).

Acute heat stress, on the other hand, can drastically reduce

the abundance of algal symbionts, in a process known as

coral bleaching (Weis 2008), which typically results in the

mortality of the coral host if the stress is prolonged or

severe (Glynn 1993).

Although elevated temperatures and nutrients can have

opposite effects on symbiont densities, pre-exposure to

elevated nutrients, particularly dissolved inorganic nitro-

gen, does not appear to mitigate bleaching, and to the

contrary, can exacerbate bleaching (Wiedenmann et al.

2013; Wooldridge et al. 2017; Donovan et al. 2020) and

coral mortality due to heat stress (Zaneveld et al. 2016).

However, these impacts can vary by coral species (Shantz

and Burkepile 2014), nitrogen source (Burkepile et al.

2019; Fernandes de Barros Marangoni et al. 2020), nutrient

concentration (D’Angelo and Wiedenmann 2014), and the

relative ratio of nitrogen to phosphorus (Wiedenmann et al.

2013; Morris et al. 2019). For example, pre-exposure to

moderate (\ 5 lM) levels of ammonium (Béraud et al.

2013) or phosphate (Dunn et al. 2012), but not nitrate

(Fernandes de Barros Marangoni et al. 2020), can enhance

coral metabolism and bleaching recovery after heat stress.

Reefs in the Caribbean have been devastated by human

impacts, with relative losses of coral cover in the region

since the 1970s averaging at least 50–80% (Gardner et al.

2003; Jackson et al. 2014). Early coral declines were

attributed to decreasing water quality (Smith et al. 1981;

Tomascik and Sander 1987; Lapointe and Clark 1992),

overfishing (Hughes 1994; Jackson et al. 2001), and disease

(Aronson and Precht 2001; Schutte et al. 2010). However,

the role of thermal stress-induced coral bleaching (Wil-

liams et al. 1987; Aronson et al. 2002; McWilliams et al.

2005; Lough et al. 2018) and its interaction with local

stressors (Zaneveld et al. 2016; Hughes et al. 2017; Wang

et al. 2018; Lapointe et al. 2019) have been increasingly

recognized since the late 1980s (Williams et al. 1987;

Glynn 1993).

Importantly, cover loss has not been homogeneous

among coral species, resulting in changes in species

dominance and reef structure over time (Aronson et al.

2004). Caribbean acroporids (Acropora cervicornis and A.

palmata), the only fast-growing taxa with branching mor-

phologies in the region, were the earliest taxa to show

significant declines and were listed as threatened by the US

Endangered Species Act in 2006. About 90% of acroporids

were lost from the 1970s to the 1990s due to disease and

bleaching (Aronson and Precht 2001; Aronson et al. 2002),

but a recent study suggests that their decline may have

started 2–3 decades earlier (Cramer et al. 2020). Similarly,

significant reductions in Orbicella spp. were documented

in multiple locations during the 1990s and 2000s (Bruckner

and Hill 2009), and as a result, O. annularis, O. faveolata,

and O. franksi were listed as threatened in 2014. Other

coral taxa, such as Agaricia, Porites, and Siderastrea, have

been more resistant to stress and have increased their rel-

ative abundance on some reefs (Goreau 1992; Aronson

et al. 2004; Pandolfi and Jackson 2006). However, unlike

Acropora and Orbicella, these corals are not primary

builders of reef frameworks and consequently do not pro-

vide the same ecosystem services of more structurally

complex coral species (Alvarez-Filip et al. 2013; De

Bakker et al. 2016).

In this study, we examined the effects of pre-exposure to

elevated nutrients (NH4 and NH4 ? PO4 for[ 2 months at

26 �C), followed by heat stress (31.5 �C for 3-weeks) on

three Caribbean corals. Two of the species (A. cervicornis

and O. faveolata) are listed as threatened under the

Endangered Species Act, and one (S. siderea) is a hardy

species that, although slow-growing, is nevertheless still

relatively common on Caribbean reefs. We aimed to

compare the effects of these combined stressors on coral

survivorship, and associated algal symbiont communities

(community composition, abundance, and function). Our

goal was to better understand the differential impacts of

nutrient pollution and heat stress on different coral holo-

bionts, and to gauge how these stressors might continue to

shape Caribbean reefs over the next decades if they are not

effectively managed.

Methods

Coral collection

Replicate fragments of A. cervicornis, O. faveolata, and S.

siderea were collected in the summer of 2017. A. cervi-

cornis (N = 6 genets) were obtained as single branches

(n = 30–31 per genet, * 4 cm long) from coral nurseries

operated by the University of Miami and Mote Marine

Laboratory. Whole colonies of O. faveolata (N = 4) and S.

siderea (N = 7) were collected from Emerald Reef (off

Key Biscayne, FL, 25.673�N, 80.098�W) under a Special

Activity License (SAL-17–1182-SRP) and were subdi-

vided in the laboratory using a drill press to obtain replicate

cores (n = 18–24 per colony, * 2—2.5 cm diameter). All

fragments were maintained in indoor tanks at * 26 �C for

at least two months for recovery.
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Experimental conditions

On day one of the experiment, we collected biopsy samples

and baseline photochemical efficiency data from each coral

fragment and haphazardly assigned them to a nutrient

treatment in one of two replicate tanks. Corals in the

ambient treatment (A) were exposed to nutrient levels

typical for Biscayne Bay, FL. Corals in elevated NH4

(N) were exposed to a 10-lM increase in ammonium, and

corals in elevated NH4 ? PO4 (N ? P) were exposed to a

10-lM increase in ammonium, plus a 1-lM increase in

PO4. These nutrient levels were chosen based on the

nutrient concentrations experienced in Caribbean reefs near

metropolitan areas that are affected by agricultural or

sewage pollution (Lapointe et al. 2004; Caccia and Boyer

2005). Each treatment was replicated in two independent

38-L glass aquaria immersed in two fiberglass tanks, which

acted as water baths to maintain target temperatures. This

setup resulted in 2–10 fragments per colony exposed to

each nutrient treatment (1–5 fragments per colony in each

replicate aquarium (Table S1). Three times per week, all

corals were transferred to a separate raceway and where

they were fed for 1 h with Zeigler� AP 110 dry larval diet.

Before returning the fragments to their experimental

aquaria, fragments and treatments were rotated in the tanks

to randomize the effect of variation in light intensity across

the tanks (which ranged from 321 to 420 lmol PAR

m - 2 s - 1). More detailed methods are described in

ESM1.

For * 2.5 months (78 d), the corals were maintained at

control temperature (26.1 ± 0.4 �C; mean ± SD). On day

79, the temperature was incrementally increased over 12 d

(‘‘ramp-up’’ phase, days 79–90) until the target heat stress

temperature of 31.5 �C was reached. During the next three

weeks (days 91–113) corals remained in the ‘‘heat stress’’

phase (31.5 ± 0.8 �C). Nutrient addition ended on day 91

due to the onset of mortality in A. cervicornis exposed to N

and N ? P. Therefore, during heat stress, the corals

assigned to N and N ? P treatments were maintained

under ambient nutrients (Fig. 1).

Coral survivorship

Mortality of fragments was recorded daily. Survival prob-

abilities were calculated for each coral species using the

Kaplan–Meier estimate (Kaplan and Meier 1958), which

uses the state of each fragment at a given time (alive, dead,

or unknown) to calculate the proportion of surviving

individuals in the treatments. Log-rank tests were used to

compare the survivorship curves for corals in A, N, and

N ? P during control and heat stress temperatures. For O.

faveolata and S. siderea, we also tested whether the dom-

inant Symbiodiniaceae type affected survivorship. When

collecting chlorophyll-a and symbiont density (see sections

below), selected fragments were killed and permanently

removed from the tanks. Since there is incomplete infor-

mation about the future outcome of the removed fragments

(it is unknown whether they would have died or survived if

they were left in the tanks), they are treated as ‘‘censored’’

events. For these events, the model uses the information of

the individuals until the point when they are removed, but

they are not considered after that day (i.e., they are ‘‘cen-

sored’’). Statistical analyses were performed with the sur-

vival 2.38 (Therneau 2015) and survminer 0.4.6

(Kassambara et al. 2019) packages for R.

Algal symbiont community function (Fv/Fm)

The photochemical efficiency of photosystem II (Fv/Fm)

was used as a proxy for algal symbiont community func-

tion and was monitored with a MAXI Imaging Pulse

Amplitude Modulated (IPAM) fluorometer (Walz, Effel-

trich, Germany). A single IPAM measurement per frag-

ment was taken every two weeks during the control

temperature phase and twice a week during heat stress. All

corals were dark-adapted for 30 min before taking

measurements.

Algal symbiont areal densities, and chlorophyll-a

concentrations

A subset of fragments was removed from the tanks before

(day 78) and after heat stress (day 113) to estimate sym-

biont areal densities (no. of symbiont cells cm-2) and

chlorophyll-a content (lg Chl-a cm-2) (Fig. 1). Two

fragments per nutrient treatment, colony, and temperature

phase were haphazardly chosen and preserved at -80 �C

Nutrient treatments (A, N, N+P)
24
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Fig. 1 Experimental conditions during the control, ramp-up, and heat

stress phases. Solid lines (black and gray) show the temperature in

two replicate tanks (mean ± 95% CI), each one holding one

aquarium at ambient nutrients (A), elevated ammonium (N), and

elevated ammonium and phosphate (N ? P). The bottom dashed line

denotes the period of nutrient addition. Circles indicate the days when

samples were collected
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until the tissue was processed for each analysis. Briefly, the

tissue from each fragment was removed with an airbrush

and DNA buffer (10 mM Tris, 1 mM EDTA). The result-

ing slurry was collected, homogenized, and divided

between two aliquots. One aliquot was filtered onto a

Whatman glass microfiber GF/F filter and then transferred

to tubes containing methanol. These samples were stored at

-20 �C for 24 h to extract chlorophyll-a and then were

measured with a TD-700 Turner fluorometer. The second

aliquot was preserved and stained with 50lL of Lugol’s

iodine solution. This sample was used to count the sym-

biont cells, using an inverted microscope and a hemocy-

tometer. Detailed methods are presented in ESM1. For A.

cervicornis, fewer fragments were sampled after heat stress

due to previous coral mortality in corals exposed to N and

N ? P (Table S2).

Symbiodiniaceae community composition

The proportion of each Symbiodiniaceae genera in the

coral fragments was assessed before nutrient addition (day

1), at the end of the control phase (day 75), and during the

heat stress phase (days 100 and 111) using real-time PCR

(qPCR) assays. Biopsy samples (1–3 polyps per fragment)

were preserved by incubating the tissue for 90 min at

65 �C in 500 lL of a solution of 1% SDS and DNA buffer

(Rowan and Powers 1991), and genomic DNA was

extracted from the SDS lysates using standard procedures

(Baker and Cunning 2016).

TaqMan master mix (Thermo Fisher Scientific) assays

were used to amplify the actin gene in Breviolum (Cunning

et al. 2015), Cladocopium, and Durusdinium (Cunning and

Baker 2013). SYBR-Green master mix (Thermo Fisher

Scientific) assays were used to quantify Symbiodinium,

using the A_actin primers described in (Winter 2017). All

coral hosts were quantified with SYBR-Green assay and

primers that target species-specific single-copy loci.

Calmodulin gene (CaM) primers (CaM_forward: 50-
GCCCTAATTTCTGATCGATTCAA-30, CaM_reverse:

50-GCAGACAGAAGGGCCACT-30) were developed and

validated for A. cervicornis (ESM1). OfavscF1 and

OfavscR1 (Cunning et al. 2015) were used for O. faveolata,

and Pax-C_F and Pax-C_R (Cunning 2013) were used for

S. siderea. Reagents and qPCR conditions for each assay

are described in ESM1. The qPCR data (CT values) were

used to estimate the symbiont to host cell ratio (S/H ratio;

Mieog et al. 2009; Cunning and Baker 2013) using the

StepOne package for R (Cunning 2018). For corals hosting

multiple Symbiodiniaceae genera, the total symbiont-to-

host cell ratio (S/H) was calculated as the addition of all

genera cell ratios (S/H = Symbiodinium/Host ? Brevio-

lum/Host ? Cladocopium/Host ? Durusdinium/Host), and

the proportion of the symbiont community composed by

thermotolerant D. trenchii was calculated as (D. trenchii/

Host)/(S/H).

Additionally, a subset of DNA samples from S. siderea

colonies that hosted Cladocopium were used to identify the

specific Cladocopium lineage based on the nuclear ribo-

somal internal transcribed spacer region 2 (ITS2). ITS2

sequences from excised dominant bands in DGGE gels

(LaJeunesse and Trench 2000; LaJeunesse 2002) were

aligned and compared with published sequences available

in GenBank. S. siderea and O. faveolata colonies pre-

dominantly hosting Durusdinium were not verified with

ITS2 but were assumed to harbor D. trenchii, the only

Durusdinium species identified to date from the Caribbean

(Pettay et al. 2015). Similarly, A. cervicornis colonies

hosting Symbiodinium were assumed to be Symbiodinium

A3, also known as S. fitti, the only member of this genus is

known to associate with A. cervicornis (LaJeunesse 2002;

Thornhill et al. 2006).

Statistical analyses

The effects of elevated nutrients during control tempera-

tures, and pre-exposure to nutrients during heat stress were

analyzed using mixed-effects models with the lme4 1.1–17

package (Bates et al. 2015) for R 3.4.3 (R Core Team

2018). Changes in Fv/Fm, symbiont areal densities, and

chlorophyll-a concentrations were individually tested for

each coral species with models that included nutrient

treatment, dominant symbiont type, and days in the

experiment as interacting fixed factors. Coral genotype and

replicate tank were included as random effects in all

models. Additionally, fragment was included as a random

factor in the Fv/Fm models. Pairwise comparisons between

significant effects were performed with the package

emmeans 1.1.3 (Lenth 2018). An alpha value of 0.05 was

preset as the threshold for the Tukey’s HSD contrasts.

Models and pairwise tables are presented in ESM3. All

figures show the mean values for the variables (± 95% CI)

and were created with ggplot2 (Wickham 2016). Data and

R code for data analysis are available at Zenodo (Palacio-

Castro 2021).

Results

Molecular identification of algal symbionts

All A. cervicornis genets hosted the genus Symbiodinium,

which was assumed to be S. fitti (see Methods). No other

Symbiodiniaceae genus was detected in A. cervicornis. In

O. faveolata, three colonies predominantly hosted Durus-

dinium (Durusdinium proportion[ 0.99), and one pre-

dominantly hosted Breviolum (Breviolum
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proportion[ 0.99). However, three fragments from this

colony were found to have relatively even amounts of

Durusdinium and Breviolum (ESM2-Fig. S1), suggesting

spatial variability in symbiont community structure within

this colony (Rowan et al. 1997). Nutrients did not change

the relative abundance of the different symbiont genera in

O. faveolata. However, during heat stress (day 100) all but

one fragment that predominantly hosted Breviolum and

survived became dominated by Durusdinium (ESM2-

Fig. S1). Breviolum or Durusdinium subtypes were not

further identified using ITS-2, but colonies hosting Du-

rusdinium were assumed to be D. trenchii (Pettay et al.

2015). In S. siderea, three colonies predominantly hosted

D. trenchii, two colonies Cladocopium C3, one colony

Cladocopium C1 (C. goreaui, LaJeunesse et al. 2018), and

one colony had variable proportions of Cladocopium C1

and D. trenchii. Nutrients did not affect the relative

abundance of the different symbiont genera hosted by S.

siderea. However, during heat stress, some cores initially

dominated by Cladocopium C3 became dominated by D.

trenchii (ESM2-Fig. S2).

Coral survivorship

Elevated nutrients reduced survivorship in A. cervicornis,

but not in O. faveolata or S. siderea. However, A. cervi-

cornis mortality was more pronounced under elevated

nutrients and heat stress combined (Fig. 2). In A. cervi-

cornis, there was no mortality during the first two months

at control temperature (* 26 �C) in any of the nutrient

treatments. However, by days 65–78, A. cervicornis

exposed to N and N ? P experienced rapid tissue loss

(ESM 2-Fig. S3), which reduced survivorship probabilities

by 10% in N (p\ 0.05) and 3% in N ? P (p[ 0.05).

Mortality was exacerbated during ramp-up and heat phases

but only affected fragments that had been pre-exposed to N

and N ? P. After one day at 31.5 �C, survivorship proba-

bilities were 30% and 12% lower in A. cervicornis pre-

exposed to N and N ? P, respectively, and were 100% and

84% lower after 3 weeks (Fig. 2; log-rank p\ 0.0001).

Although mortality was higher in N than in N ? P, sur-

vivorship probabilities were not significantly different

between these treatments (log-rank p = 0.097). None of the

A. cervicornis fragments maintained in ambient nutrients

(A) died during the control or heat stress phases.

Heat stress (alone or combined with elevated nutrients)

reduced survivorship in O. faveolata, but this effect

depended on the symbiont type hosted. During heat stress,

the colony hosting Breviolum experienced significant

mortality (ESM2-Fig. S4; log-rank p\ 0.0001) indepen-

dent of nutrient treatment (Fig. 2; log-rank p = 0.85).

Survival probabilities in this colony were * 33% lower

after one day under heat stress and 100% lower after

3 weeks (ESM2-Fig. S4). S. siderea did not experience

Fig. 2 Survivorship probabilities of Acropora cervicornis, Orbicella
faveolata, and Siderastrea siderea. Each panel represents a single

species under each nutrient treatment (A, N, and N ? P) during the

control temperature (days 2–78), ramp-up (days 79–90), and heat

stress phases (days 91–113). Log-rank p-values in each panel show if

nutrient treatments had a significant effect on the survivorship

probabilities. Fragments at risk tables show each nutrient treatment

(y-axis), the days in the experiment (x-axis), and the respective

number of fragments that remained in the experiment on any specific

day (initial number of fragments minus fragments that died or were

removed to collect whole-tissue samples). The ‘‘x’’ symbols represent

‘‘censored’’ events (days when fragments were removed to obtain

samples). The bottom dashed line denotes the period of nutrient

addition, and the dotted lines denote the ramped-up and heat stress

periods. Survival probabilities for S. siderea in N and N ? P overlap

(hiding the N ? P line)
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significant mortality during the control or heat stress phases

in any of the nutrient treatments (Fig. 2; log-rank

p = 0.37).

Symbiont community function (Fv /Fm)

During the first 1–2 months at control temperatures, ele-

vated nutrients (N and N ? P) increased photochemical

efficiency (Fv/Fm) in A. cervicornis ? S. fitti (? 5–10%),

O. faveolata ? D. trenchii (? 8–13%), and S. siderea ?

D. trenchii (? 8–13%) compared to ambient nutrients

(A) (Fig. 3; Tukey’s HSD p\ 0.05). The opposite effect

was observed for S. siderea ? Cladocopium (C1 or C3),

which, by the end of the control phase (days 65–71),

had * 8–15% lower Fv/Fm in fragments maintained in N

compared to A (Fig. 3; Tukey’s HSD p\ 0.05).

Heat stress reduced Fv/Fm in all coral holobionts, but the

magnitude varied by coral species, dominant algal sym-

biont type, and pre-exposure to nutrients (Fig. 3). During

heat stress, S. siderea ? Cladocopium C3 showed the

earliest and largest declines in Fv/Fm overall. After one day

in heat, Cladocopium C3 fragments had experienced

18–23% reduction in Fv/Fm with respect to controls

(Tukey’s HSD p\ 0.05), and after one week, declines

reached more than 40% (-41% in N, -54% in A, and

-56% in N ? P; Tukey’s HSD p\ 0.05). Compared to

Cladocopium C3, fragments that hosted Cladocopium C1

and D. trenchii experienced smaller reductions in Fv/Fm

during heat stress. Cladocopium C1 corals experienced a

maximum Fv/Fm decline of 17–26% (Tukey’s HSD

p\ 0.05), while cores hosting D. trenchii had a maximum

decline of 10–16% (Tukey’s HSD p[ 0.05).

A. cervicornis ? S. fitti had the second largest reduction

in Fv/Fm. However, in these corals, the effect of heat stress

was exacerbated by pre-exposure to elevated nutrients.

Corals exposed to A, N, and N ? P experienced 5%, 32%,

and 18% reductions in Fv/Fm, respectively, after one week

in heat compared to control temperatures (Tukey’s HSD

p\ 0.05). After two weeks in heat stress, Fv/Fm declined

by 11%, 49%, and 41% (Tukey’s HSD p\ 0.05; Fig. 3).

Fig. 3 Photochemical efficiency of A. cervicornis, O. faveolata, and
S. siderea by symbiont community. Each panel represents the

photochemical efficiency (mean Fv/Fm ± 95% CI) of a single coral

species and dominant algal symbiont under each nutrient treatment

(A, N, and N ? P) during control, ramp-up, and heat stress phases.

The data were fitted to a smooth line trend (span = 0.5) to highlight

the overall trends. The bottom dashed line denotes the period of

nutrient addition, and the dotted lines denote the ramp-up and heat

stress periods
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In O. faveolata ? D. trenchii, Fv/Fm declines with

respect to values at control temperature were significant

after two weeks in heat stress (17–25%; Tukey’s HSD

p\ 0.05), and pre-exposure to nutrients did not have a

significant effect. There were no fragments hosting Brevi-

olum at this time since they had either died or become

dominated by D. trenchii.

Chlorophyll-a concentrations

During the control phase (day 78), A. cervicornis chloro-

phyll-a concentrations in ambient (A) were

3.6 ± 0.4 lg cm-2 (mean ± SE). Exposure to nutrients

increased these values by 43% in N (Tukey’s HSD

p\ 0.05) and 39% in N ? P (Tukey’s HSD p = 0.05).

After three weeks in heat stress (day 113), chlorophyll-

a declined by 62% in A and 91% in N ? P with respect to

their pre-heat stress values (Tukey’s HSD p\ 0.05;

Fig. 4). Similarly, at control temperatures, O. faveolata

chlorophyll-a concentration was 49% higher in N and 55%

in N ? P with respect to A (3.8 ± 0.6; Tukey’s HSD

p\ 0.05). Heat significantly reduced these values by 40%

in A, 73% in N, and 53% in N ? P with respect to their

pre-heat stress values (Tukey’s HSD p\ 0.05; Fig. 4).

In S. siderea, chlorophyll-a concentration varied with

symbiont identity and heat stress interactions (Fig. 4). At

control temperature, Cladocopium C3 fragments had

higher chlorophyll-a concentration (6.8 ± 0.7) than

Cladocopium C1 (3.9 ± 0.7) and D. trenchii fragments

(4.4 ± 0.5) (Tukey’s HSD p\ 0.05). Heat stress reduced

chlorophyll-a concentration in all treatments and sym-

bionts (Tukey’s HSD p\ 0.05; Fig. 4). Although chloro-

phyll-a loss was higher in Cladocopium C3 and C1

(-73.6% and -73.3%, respectively) than in D. trenchii

(-65.5%), the final (day 113) concentrations were similar

among all symbionts.

Areal symbiont densities

Heat was the only factor that significantly affected sym-

biont areal densities (mean cells cm-2 ± SE) across all

coral–algal combinations (Fig. 5). Under control tempera-

ture, A. cervicornis in ambient (A) hosted 4.1 ± 0.4 9 106

cells cm-2. Although symbiont densities were 18.1% and

29.7% higher in A. cervicornis exposed to N and N ? P,

respectively, these differences were not significant

(p[ 0.05 Tukey’s HSD; Fig. 5). In A. cervicornis, heat

reduced symbiont densities by 73.9% in A (Tukey’s HSD

p\ 0.05). Fragments in N and N ? P could not be

assessed due to mortality in these treatments.

At control temperatures, O. faveolata symbiont densities

were similar among nutrient treatments and symbiont types

(1.6 ± 0.2 9 106). Heat significantly reduced symbiont

densities in all nutrient treatments compared to their values

at control temperature (-50% in A, -70% in N, and -59%

in N ? P; Tukey’s HSD p\ 0.05, Fig. 5).

S. siderea symbiont density was influenced by dominant

symbiont, but not by nutrient treatment. At control tem-

peratures, fragments hosting Cladocopium C3

(1.32 ± 0.1 9 106) had 23% higher densities than cores

hosting Cladocopium C1 and D. trenchii (Tukey’s HSD

p\ 0.05). Heat stress reduced areal densities in all S.

siderea symbiont combinations (Tukey’s HSD p\ 0.05),

but symbiont loss was higher in Cladocopium C3 (-68%)

than in Cladocopium C1 (-44%) and D. trenchii (-32%).

Discussion

The goal of this study was to compare the response of three

Caribbean corals and their associated algal symbionts to (1)

elevated nutrients (N and N ? P) at control temperature

(* 26 �C), (2) elevated temperature (* 31.5 �C) at

ambient nutrients (A), and (3) the combined effects of

elevated nutrients and temperature. Of note, our experi-

ment was designed to test the interactions between heat and

nutrients, but we ceased the addition of nutrients during

heat stress, due to the rapid mortality observed in A. cer-

vicornis exposed to elevated N and N ? P (Figs. 1, 2).
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Despite this limitation, we were able to document different

responses among multiple coral–algal combinations to

elevated nutrients, heat stress, and pre-exposure to elevated

nutrients followed by heat stress, which may help explain

differential changes in coral cover among Caribbean coral

species.

A. cervicornis is highly susceptible to elevated

nutrients

In our study, A. cervicornis was highly susceptible to ele-

vated nutrients compared to O. faveolata and S. siderea.

For example, A. cervicornis experienced mortality in

fragments exposed to N and N ? P during the control,

ramp-up, and heat stress phases (Fig. 2), while mortality in

O. faveolata only occurred during heat stress and was

dependent on symbiont identity, but not previous exposure

to high nutrients (ESM2-Figs. S1, S4). Although nutrients

are known to exacerbate the severity of disease in corals

(Bruno et al. 2003; Vega Thurber et al. 2013), the mortality

of A. cervicornis in our study was likely caused by the

disruption of algal symbiosis under the elevated nutrients,

rather than other pathologies (e.g., white band or other

infectious diseases). In this study, tissue loss began in

different areas of the fragments (not only the bases) and

tissue sloughing quickly advanced in a variety of direc-

tions, rather than as a clear band moving up from the base

(ESM2-Fig. S3). Additionally, all A. cervicornis fragments,

regardless of nutrient treatment, were fed 2–3 times a week

in the same feeding chamber for * 1 h, but mortality did

not spread from corals in the N and N ? P to corals in the

A treatments, even during heat stress, when corals are

likely to become immunocompromised (Muller et al.

2018). This suggests that the cause of death was not

infectious or transmissible through the water column.

Although in our experiment pre-exposure to elevated

nutrients exacerbated the effects of heat in A. cervicornis, it

is possible that the interaction among these two stressors

would have a different outcome if heat stress was followed

by elevated nutrients. In this case, nutrient availability

could boost bleaching recovery by providing the algal

symbiont with the required elements to repopulate the

bleached coral tissue (Falkowski et al. 1993; Hoegh-

Guldberg 1994; Marubini and Davies 1996) and by stim-

ulating algal photosynthesis and carbon translocation to the

host (Fernandes de Barros Marangoni et al. 2020). Due to

the limitation of our experimental design, we cannot

determine whether mortality in elevated N and N ? P

would have continued if A. cervicornis had been main-

tained longer in elevated nutrients without applying heat

stress. However, the fact that there was no mortality in A

fragments during heat (compared with 84–100% mortality

in N and N ? P, Fig. 2) strongly suggests that excess

nutrients were the primary cause of tissue loss. We suggest
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that the physiological impairment of these corals due to

nutrient stress was exacerbated at elevated temperatures

(Wiedenmann et al. 2013; Burkepile et al. 2019), as indi-

cated by the larger declines in Fv/Fm during heat stress in

A. cervicornis fragments pre-exposed to N and N ? P

compared to A (Fig. 3).

Contrary to what we expected, the addition of phosphate

(N ? P treatment) did not mitigate the detrimental effects

of elevated ammonium (N treatment) under heat stress

(Morris et al. 2019). Although survivorship was slightly

higher in the A. cervicornis fragments exposed to N ? P

compared to N, their survivorship probabilities and decli-

nes in Fv/Fm under heat stress were not significantly dif-

ferent (Figs. 2, 3). It is possible that the addition of

phosphate in our study was not enough to compensate for

the excess of nitrogen and that even in the N ? P treat-

ments the corals were experiencing phosphorus starvation

(Wiedenmann et al. 2013). If that was the case, both N and

N ? P treatments were under conditions that compromise

the health of the coral–algal symbiosis, such as the

replacement of phospholipids with sulfolipids in the algal

membranes (Wiedenmann et al. 2013).

Based on our findings, A. cervicornis survivorship can

be significantly increased, across a range of temperatures

(including temperatures * 1 �C above the local summer

maximum), by improving water quality. These results offer

some hope, as well as additional challenges, for coral reef

conservation and restoration of A. cervicornis. On the one

hand, coastal pollution from both point and non-point

sources can be more directly addressed by local policy and

management practices, while reductions in carbon emis-

sions require global action and involve considerable time

before benefits will be experienced, due to committed

warming from greenhouse pollutants already in the atmo-

sphere (Donner 2009). On the other hand, if nutrient loads

are not controlled, excess nitrogen (with or without addi-

tional phosphate) could impair A. cervicornis survivorship

(Fig. 2), exacerbating the effects of heat stress, and jeop-

ardizing the effectiveness of recovery efforts for this iconic

species.

To date, monitoring of outplanted A. cervicornis in

Florida has shown satisfactory survivorship after one year

(Schopmeyer et al. 2017; O’Donnell et al. 2018), but sur-

vivorship significantly declines after two years (Ware et al.

2020), and this may be due in part to nutrient pollution. In

addition to reducing survivorship, nutrient loads could

reduce A. cervicornis growth rates (Renegar and Riegl

2005), further hindering the recovery of coral cover by this

species. The data presented here suggest that, at least for A.

cervicornis in Florida, long-term restoration success may

be impaired if water quality issues are not addressed (Ware

et al. 2020). However, other species, such as O. faveolata

and S. siderea, may be less susceptible to these concerns

(see next section).

Finally, heat stress alone (3 weeks at * 31 �C) did not

cause A. cervicornis mortality in our study, but significant

sublethal effects were detected, such as reductions in Fv/Fm

(Fig. 3), chlorophyll-a concentration (Fig. 4), and sym-

biont density (Fig. 5). Indeed, declines in photochemical

efficiency in A. cervicornis were among the highest of all

experimental corals maintained in the ambient (A) treat-

ment, surpassed only by S. siderea fragments hosting

Cladocopium C3 (Fig. 3). In this study, A. cervicornis

fragments maintained in A survived to the end of the

experiment and recovered their normal pigmentation and

Fv/Fm values 1–2 weeks after they were removed from

heat stress. However, it is likely that exposure to additional

heat stress (longer duration or higher temperatures) would

have resulted in widespread A. cervicornis mortality. For

example, A. cervicornis corals exposed to 32 �C suffered

100% mortality after one month, while O. faveolata ? D.

trenchii survived for more than two months (Langdon et al.

2018).

O. faveolata and S. siderea susceptibility to heat stress

varies with their symbiont community, but it is

not affected by pre-exposure to elevated nutrients

Bleaching susceptibility in scleractinian corals is known to

vary as a function of algal symbiont community structure

(Baker et al. 2004; Berkelmans and van Oppen 2006),

relative abundance (Cunning and Baker 2013), and nutri-

tional state (Wiedenmann et al. 2013). On Florida’s Coral

Reef, A. cervicornis have been found in association with

Symbiodinium, Cladocopium, and Durusdinium (Baums

et al. 2010), but our experimental fragments only hosted

the most common symbiont for this species in Florida, S.

fitti. Conversely, our O. faveolata and S. siderea colonies

hosted different algal symbiont types, which allowed us to

compare the sensitivity of these different coral–algal

combinations to elevated nutrients and heat stress.

We found that O. faveolata ? Breviolum was suscepti-

ble to heat, with mortality beginning during the first week

of heat stress (Fig. 2, ESM2-Fig. S4). Nutrient treatment in

this holobiont did not affect survivorship probabilities

(Fig. 2), Fv/Fm (Fig. 3), or symbiont densities (Fig. 5), but

did affect chlorophyll-a content, which increased by

49–55% in the N and N ? P treatments (Fig. 4). In con-

trast, there was no significant mortality in response to heat

stress in O. faveolata colonies hosting D. trenchii (ESM2-

Figs. S1, S4). Although there were small changes in these

corals under elevated nutrients and ambient temperatures

(higher Fv/Fm and chlorophyll-a content), their response to

heat stress was not affected by pre-exposure to nutrients

(Figs. 2, 3, 4, 5).
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Our experiment only included one O. faveolata colony

hosting Breviolum, but our results agree with previous

studies indicating higher thermotolerance of O. faveolata

containing Durusdinium compared to Breviolum (e.g.,

Cunning et al. 2015, 2018; Parker et al. 2020). O. faveolata

is remarkably flexible in its associations with Symbio-

diniaceae and can host Symbiodinium, Breviolum, Clado-

copium, Durusdinium, or a combination of all four of these

genera (Rowan et al. 1997; Kemp et al. 2014; Kennedy

et al. 2016). Breviolum was the most common and domi-

nant symbiont in O. faveolata in the Florida Keys

(Thornhill et al. 2006; Baums et al. 2010; Kemp et al.

2015), but more recent studies have shown a shift in

dominance toward D. trenchii (Manzello et al. 2019). It is

likely that severe back-to-back bleaching events in 2014

and 2015 resulted in higher mortality of corals hosting

thermosensitive symbionts such as Breviolum, as well as

shifts in the symbiont communities in surviving corals in

favor of D. trenchii (Cunning et al. 2015). These changes in

the algal community have potentially increased the ther-

motolerance of O. faveolata populations in the Caribbean,

decreasing the risk of coral mortality during future heat

stress events. However, there are likely to be trade-offs,

such as reduced growth rates, or less reproductive output

that could still compromise the ecological function or

inclusive fitness of these corals (Jones and Berkelmans

2010).

Similar to O. faveolata, S. siderea can host multiple

algal partners and commonly become dominated by D.

trenchii during or after heat stress (Cunning et al. 2018).

Algal symbionts in the genera Symbiodinium, Breviolum,

Cladocopium, and Durusdinium have been reported in this

species (Thornhill et al. 2006; Correa et al. 2009), but our

colonies only hosted Cladocopium C1, Cladocopium C3,

D. trenchii, or a combination of Cladocopium and D.

trenchii. In our experiment, the composition of the algal

symbiont community had the strongest effect on S. siderea

symbiont density (Fig. 5), photochemical efficiency

(Fig. 3), and bleaching susceptibility (Figs. 4, 5), but

nutrients did not modify these patterns. Based on coral

mortality alone, S. siderea was the most resistant species to

both elevated nutrients and heat stress, with no significant

mortality among any of the treatments or colonies (Fig. 2).

However, colonies that hosted Cladocopium C3 had the

strongest declines in Fv/Fm of all the holobionts tested

(Fig. 3), suggesting that this was a relatively heat-sensitive

combination compared to Cladocopium C1 and D. trenchii

(Figs. 3, 4, 5).

This functional variation among Cladocopium types

suggests that higher thermotolerance in S. siderea can be

achieved by hosting Cladocopium C1 as well as by hosting

D. trenchii (Figs. 3, 4, 5). Cladocopium C1 and C3 are both

considered to be generalists since they are found in

multiple hosts and have a global distribution (LaJeunesse

2005). While Cladocopium C3 has been generally consid-

ered to be thermosensitive, the relative thermotolerance of

Cladocopium C1 in the Caribbean has not been determined.

On the Great Barrier Reef, Cladocopium C1 has been

found to exhibit local adaptation to thermal stress (Howells

et al. 2011), but this has not yet been recorded in Caribbean

corals. It is not yet clear whether the higher thermotoler-

ance of C1 compared to C3 is also accompanied by

physiological trade-offs, such as reduced growth rates, that

have been reported for hosts containing D. trenchii (Pettay

et al. 2015).

A variety of species, including S. siderea, Colpophyllia

natans, O. annularis, O. franksi, Porites astreoides, and

Pseudodiploria strigosa, have been found to host Clado-

copium C1 in the Caribbean, including the US Virgin

Islands and Yucatán peninsula of Mexico (LaJeunesse

2002, 2005; Correa et al. 2009; Finney et al. 2010; Cunning

et al. 2017; Davies et al. 2018). However, this symbiont

does not appear to have been very abundant in Florida in

previous studies (Thornhill et al. 2006; Correa et al. 2009).

Future studies should determine whether this symbiont

imparts higher heat tolerance to other coral species in

addition to S. siderea, what the trade-offs may be, and

whether this symbiont is becoming more common in the

region in response to recurrent heat stress. Answering these

questions will help determine whether this symbiont might

play a role in the future persistence of Caribbean corals

under projected climate change scenarios.

Conclusions

In this study, we show that A. cervicornis is particularly

vulnerable to elevated nutrients and that the detrimental

effects of nutrient pollution are exacerbated by heat stress.

Given the importance of recovering sustainable popula-

tions of this species in the Caribbean, a primary focus for

local managers should be the reduction of nutrient levels in

coastal areas, which will increase A. cervicornis survivor-

ship and resilience to global warming. In contrast, O.

faveolata and S. siderea were not affected by elevated

nutrients but were directly affected by high temperatures.

In these species, the presence of thermotolerant algal

symbionts (in particular, D. trenchii) reduced the impacts

of heat stress, and shifts in symbiont communities in favor

of these symbionts may already be occurring on some reefs

in the tropical western Atlantic. We found that in addition

to D. trenchii, shifts in favor of Cladocopium C1 may also

help increase thermotolerance in some coral species. The

ecological significance of Cladocopium C1 could be fur-

ther investigated, particularly in species such as O.
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faveolata and S. siderea that typically host diverse sym-

biont communities.
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